Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band Matrices

نویسنده

  • Reinhard Nabben
چکیده

It is well known that the inverse C = c i;j ] of an irreducible nonsingular symmetric tridiagonal matrix is a Green matrix, i.e. it satisses c i;j = u i v j for i j and two sequences of real numbers fu i g and fv i g. A similar result holds for nonsymmetric matrices A. There the inverse is given by four sequences fu i g; fv i g; fy i g; and fy i g: Here we characterize certain properties of A in terms of the u i ; v i ; x i , and y i namely that A is an M{matrix or positive deenite. We also establish a relation of zero row sums and zero column sums of A and pairwise constant u i ; v i ; x i and y i. Moreover we consider decay rates for the entries of the inverse of tridiagonal and block tridiagonal (banded) matrices. For diagonally dominant matrices we show that the entries of the inverse strictly decay along a row or column. We give a sharp decay result for tridiagonal irreducible M{matrices and tridiagonal positive deenite matrices. We also give a decay rate for arbitrary banded M{matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Determinants of Block Tridiagonal Matrices

A tridiagonal matrix with entries given by square matrices is a block tridiagonal matrix; the matrix is banded if off-diagonal blocks are upper or lower triangular. Such matrices are of great importance in numerical analysis and physics, and to obtain general properties is of great utility. The blocks of the inverse matrix of a block tridiagonal matrix can be factored in terms of two sets of ma...

متن کامل

On Green's Matrices of Trees

The inverse C = [ci,j ] of an irreducible nonsingular symmetric tridiagonal matrix is a socalled Green’s matrix, i.e. it is given by two sequences of real numbers {ui} and {vi} such that ci,j = uivj for i ≤ j. A similar result holds for nonsymmetric matrices. An open problem on nonsingular sparse matrices is whether there exists a similar structure for their inverses as in the tridiagonal case....

متن کامل

Persistently positive inverses of perturbed M-matrices

A well known property of anM-matrixA is that the inverse is element-wise non-negative, which we write asA−1 0. In this paper we consider perturbations ofM-matrices and obtain bounds on the perturbations so that the non-negative inverse persists. The bounds are written in terms of decay estimates which characterize the decay (along rows) of the elements of the inverse matrix. We obtain results f...

متن کامل

QRT: A QR-Based Tridiagonalization Algorithm for Nonsymmetric Matrices

A QR-based tridiagonal-ization algorithm for nonsymmetric matrices. SIAM J. Mat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999